Методические материалы, статьи

Как ее доказывали…

Вряд ли хоть один год в жизни нашей редакции проходил без того, чтобы она не получала добрый десяток доказательств теоремы Ферма. Теперь, после «победы» над ней, поток поутих, но не иссяк.

Конечно, не для того чтобы его высушить окончательно, публикуем мы эту статью. И не в свое оправдание — что, мол, вот почему мы отмалчивались, сами не доросли еще до обсуждения столь сложных проблем.

Но если статья действительно покажется сложной, загляните сразу в ее конец. Вы должны будете почувствовать, что страсти поутихли временно, наука не окончена, и вскорости новые доказательства новых теорем направятся в редакции.

Кажется, ХХ век прошел не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трех чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной ученой игрушкой — в одном ряду с теорией относительности, квантовой механикой и теоремой Геделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учеными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

Заметим для начала, что она родилась гораздо позже своего естественного срока. Ведь первый частный случай теоремы Ферма — это уравнение Пифагора X2 + Y2 = Z2, связывающее длины сторон прямоугольного треугольника. Доказав эту формулу двадцать пять веков назад, Пифагор сразу задался вопросом: много ли в природе таких треугольников, у которых оба катета и гипотенуза имеют целую длину? Кажется, египтяне знали лишь один такой треугольник — со сторонами (3, 4, 5). Но нетрудно найти и другие варианты: например (5, 12, 13), (7, 24, 25) или (8, 15, 17). Во всех этих случаях длина гипотенузы имеет вид (А2 + В2), где А и В — взаимно простые числа разной четности. При этом длины катетов равны (А2 — В2) и 2АВ.

Заметив эти соотношения, Пифагор без труда доказал, что любая тройка чисел (X = A2 — B2, Y = 2AB, Z = A2 + B2) является решением уравнения X2 + Y2 = Z2 и задает прямоугольник со взаимно простыми длинами сторон. Видно также, что число разных троек такого сорта бесконечно. Но все ли решения уравнения Пифагора имеют такой вид? Ни доказать, ни опровергнуть такую гипотезу Пифагор не смог и оставил эту проблему потомкам, не заостряя на ней внимание. Кому охота подчеркивать свои неудачи? Похоже, что после этого проблема целочисленных прямоугольных треугольников лежала в забвении семь столетий — до тех пор, пока в Александрии не появился новый математический гений по имени Диофант.

Мы мало знаем о нем, но ясно: он был совсем не похож на Пифагора. Тот чувствовал себя царем в геометрии и даже за ее пределами — будь то в музыке, астрономии или политике. Первая арифметическая связь между длинами сторон благозвучной арфы, первая модель Вселенной из концентрических сфер, несущих планеты и звезды, с Землею в центре, наконец, первая республика ученых в италийском городе Кротоне — таковы личные достижения Пифагора. Что мог противопоставить таким успехам Диофант — скромный научный сотрудник великого Музея, давно переставшего быть гордостью городской толпы?

Только одно: лучшее понимание древнего мира чисел, законы которого едва успели ощутить Пифагор, Евклид и Архимед. Заметим, что Диофант еще не владел позиционной системой записи больших чисел, но он знал, что такое отрицательные числа и, наверное, провел немало часов, размышляя о том, почему произведение двух отрицательных чисел положительно. Мир целых чисел впервые открылся Диофанту как особая вселенная, отличная от мира звезд, отрезков или многогранников. Главное занятие ученых в этом мире — решение уравнений, настоящий мастер находит все возможные решения и доказывает, что других решений нет. Так поступил Диофант с квадратным уравнением Пифагора, а потом задумался: имеет ли хоть одно решение сходное кубическое уравнение X3 + Y3 = Z3?

Найти такое решение Диофанту не удалось, его попытка доказать, что решений нет, тоже не увенчалась успехом. Поэтому, оформляя итоги своих трудов в книге «Арифметика» (это был первый в мире учебник теории чисел), Диофант подробно разобрал уравнение Пифагора, но ни словом не заикнулся о возможных обобщениях этого уравнения. А мог бы: ведь именно Диофант впервые предложил обозначения для степеней целых чисел! Но увы: понятие «задачник» было чуждо эллинской науке и педагогике, а публиковать перечни нерешенных задач считалось неприличным занятием (только Сократ поступал иначе). Не можешь решить проблему — молчи! Диофант умолк, и это молчание затянулось на четырнадцать веков — вплоть до наступления Нового времени, когда возродился интерес к процессу человеческого мышления.

Пьер Ферма (1601 — 1665) — автор теоремы, которая была доказана лишь в конце ХХ века
Кто только и о чем не фантазировал на рубеже XVI — XVII веков! Неутомимый вычислитель Кеплер пытался угадать связь между расстояниями от Солнца до планет. Пифагору это не удалось. Кеплер добился успеха после того, как научился интегрировать многочлены и другие несложные функции. Напротив, фантазер Декарт не любил длинных расчетов, но именно он первый представил все точки плоскости или пространства, как наборы чисел. Эта дерзкая модель сводит любую геометрическую задачу о фигурах к некой алгебраической задаче об уравнениях — и наоборот. Например, целые решения уравнения Пифагора соответствуют целым точкам на поверхности конуса. Поверхность, соответствующая кубическому уравнению X3 + Y3 = Z3, выглядит сложнее, ее геометрические свойства ничего не подсказали Пьеру Ферма, и тому пришлось прокладывать новые пути сквозь дебри целых чисел.

В 1636 году в руки молодого юриста из Тулузы попала книга Диофанта, только что переведенная на латынь с греческого оригинала, случайно уцелевшего в каком-то византийском архиве и привезенного в Италию кем-то из беглецов-ромеев в пору турецкого разорения. Читая изящное рассуждение об уравнении Пифагора, Ферма задумался: можно ли найти такое его решение, которое состоит из трех чисел-квадратов? Малых чисел такого сорта нет: это легко проверить перебором. А как насчет больших решений? Не имея компьютера, Ферма не мог поставить численный эксперимент. Но он заметил, что по каждому «большому» решению уравнения X4 + Y4 = Z4 можно построить меньшее его решение. Значит, сумма четвертых степеней двух целых чисел никогда не равна той же степени третьего числа! А как насчет суммы двух кубов?

Вдохновленный успехом для степени 4, Ферма попытался модифицировать «метод спуска» для степени 3 — и это ему удалось. Оказалось, что невозможно составить два малых куба из тех единичных кубиков, на которые рассыпался большой куб с целой длиной ребра. Торжествующий Ферма сделал краткую запись на полях книги Диофанта и послал в Париж письмо с подробным сообщением о своем открытии. Но ответа он не получил — хотя обычно столичные математики быстро реагировали на очередной успех их одинокого коллеги-соперника в Тулузе. В чем тут дело?

Очень просто: к середине XVII века арифметика вышла из моды. Большие успехи итальянских алгебраистов XVI века (когда были решены уравнения-многочлены степеней 3 и 4) не стали началом общенаучной революции, ибо они не позволили решить новые яркие задачи в сопредельных областях науки. Вот если бы Кеплеру удалось угадать орбиты планет с помощью чистой арифметики… Но увы — для этого потребовался математический анализ. Значит, его и надо развивать — вплоть до полного торжества математических методов в естествознании! Но анализ вырастает из геометрии, арифметика же остается полем забав для досужих юристов и прочих любителей вечной науки о числах и фигурах.

Итак, арифметические успехи Ферма оказались несвоевременны и остались неоцененными. Он не был этим огорчен: для славы математика довольно впервые открывшихся ему фактов дифференциального исчисления, аналитической геометрии и теории вероятностей. Все эти открытия Ферма сразу вошли в золотой фонд новой европейской науки, меж тем как теория чисел отошла на задний план еще на сто лет — пока ее не возродил Эйлер.

Этот «король математиков» XVIII века был чемпионом во всех применениях анализа, но не пренебрегал и арифметикой, поскольку новые методы анализа приводили к неожиданным фактам о числах. Кто бы мог подумать, что бесконечная сумма обратных квадратов (1 + 1/4 + 1/9 + 1/16+…) равна p2/6? Кто из эллинов мог предвидеть, что похожие ряды позволят доказать иррациональность числа p?

Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось, но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень — 5.

Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители — дело тонкое. Даже Эйлер не разобрался в нем до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд — учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: все, чего коснулись его руки и разум, не будет забыто новой ученой молодежью.

Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 — и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.

Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый ученый ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось, оттого в XIX веке научно-технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.

Гаусс по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог все, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, Гаусс переводит эту задачу на язык алгебры — и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9-угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.

Конечно, такой успех не дается даром: приходится изобретать новые понятия, отражающие суть дела. Ньютон ввел три таких понятия: флюксию (производную), флюенту (интеграл) и степенной ряд. Их хватило для создания математического анализа и первой научной модели физического мира, включающей механику и астрономию. Гаусс тоже ввел три новых понятия: векторное пространство, поле и кольцо. Из них выросла новая алгебра, подчинившая себе греческую арифметику и созданную Ньютоном теорию числовых функций. Оставалось еще подчинить алгебре логику, созданную Аристотелем: тогда можно будет с помощью расчетов доказывать выводимость или невыводимость любых научных утверждений из данного набора аксиом! Например, выводится ли теорема Ферма из аксиом арифметики, или постулат Евклида о параллельных прямых — из прочих аксиом планиметрии?

Эту дерзкую мечту Гаусс не успел осуществить — хотя продвинулся он далеко и угадал возможность существования экзотических (некоммутативных) алгебр. Построить первую неевклидову геометрию сумел только дерзкий россиянин Николай Лобачевский, а первую некоммутативную алгебру (Теорию Групп) — француз Эварист Галуа. И лишь много позже смерти Гаусса — в 1872 году — юный немец Феликс Кляйн догадался, что разнообразие возможных геометрий можно привести во взаимно-однозначное соответствие с разнообразием возможных алгебр. Попросту говоря, всякая геометрия определяется своей группой симметрий — тогда как общая алгебра изучает все возможные группы и их свойства.

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился еще при жизни Гаусса. Сам он пренебрег теоремой Ферма из принципа: не царское это дело — решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооруженные его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порожденных корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) — так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен еще Евклиду, но только Гаусс дал его строгое доказательство. А как обстоит дело с целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее ее природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей все новых жертв в форме новых сложных теорий. Не удивительно, что к началу ХХ века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но ее соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры — Пуанкаре и Гильберт — демонстративно сторонились этой темы.

В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трех важнейших проблем, стоящих перед математикой ХХ века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намек был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тогда в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями — значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою группу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путем действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А еще на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y2 = AX3 + BX2 + CX и потому пересекаются с любой прямой в трех точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение — превратить ее в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой, может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…

Так рассуждал Пуанкаре, соблазняя математическую молодежь Европы, но в начале ХХ века эти соблазны не привели к ярким теоремам или гипотезам. Иначе получилось с призывом Гильберта: изучать общие решения диофантовых уравнений с целыми коэффициентами! В 1922 году молодой американец Льюис Морделл связал множество решений такого уравнения (это — векторное пространство определенной размерности) с геометрическим родом той комплексной кривой, которая задается этим уравнением. Морделл пришел к выводу, что если степень уравнения достаточно велика (больше двух), то размерность пространства решений выражается через род кривой, и потому эта размерность КОНЕЧНА. Напротив — в степени 2 уравнение Пифагора имеет БЕСКОНЕЧНОМЕРНОЕ семейство решений!

Конечно, Морделл видел связь своей гипотезы с теоремой Ферма. Если станет известно, что для каждой степени n > 2 пространство целых решений уравнения Ферма конечномерно, это поможет доказать, что таких решений вовсе нет! Но никаких путей к доказательству своей гипотезы Морделл не видел — и хотя он прожил долгую жизнь, но не дождался превращения этой гипотезы в теорему Фальтингса. Это случилось в 1983 году — в совсем иную эпоху, после великих успехов алгебраической топологии многообразий.

Пуанкаре создал эту науку как бы нечаянно: ему захотелось узнать, какие бывают трехмерные многообразия. Ведь разобрался же Риман в строении всех замкнутых поверхностей и получил очень простой ответ! Если в трехмерном или многомерном случае такого ответа нет — нужно придумать систему алгебраических инвариантов многообразия, определяющую его геометрическое строение. Лучше всего, если такие инварианты будут элементами каких-нибудь групп — коммутативных или некоммутативных.

Как ни странно, этот дерзкий план Пуанкаре удался: он был выполнен с 1950 по 1970 год благодаря усилиям очень многих геометров и алгебраистов. До 1950 года шло тихое накопление разных методов классификации многообразий, а после этой даты как будто накопилась критическая масса людей и идей и грянул взрыв, сравнимый с изобретением математического анализа в XVII веке. Но аналитическая революция растянулась на полтора столетия, охватив творческие биографии четырех поколений математиков — от Ньютона и Лейбница до Фурье и Коши. Напротив, топологическая революция ХХ века уложилась в двадцать лет — благодаря большому числу ее участников. При этом сложилось многочисленное поколение самоуверенных молодых математиков, вдруг оставшихся без работы на исторической родине.

В семидесятые годы они устремились в сопредельные области математики и теоретической физики. Многие создали свои научные школы в десятках университетов Европы и Америки. Между этими центрами поныне циркулирует множество учеников разного возраста и национальности, с разными способностями и склонностями, и каждый хочет прославиться каким-нибудь открытием. Именно в этом столпотворении были, наконец, доказаны гипотеза Морделла и теорема Ферма.

Однако первая ласточка, не ведая о своей судьбе, выросла в Японии в голодные и безработные послевоенные годы. Звали ласточку Ютака Танияма. В 1955 году этому герою исполнилось 28 лет, и он решил (вместе с друзьями Горо Шимура и Такаудзи Тамагава) возродить в Японии математические исследования. С чего начать? Конечно, с преодоления изоляции от зарубежных коллег! Так в 1955 году три молодых японца устроили в Токио первую международную конференцию по алгебре и теории чисел. Сделать это в перевоспитанной американцами Японии было, видимо, легче, чем в замороженной Сталиным России…

Среди почетных гостей были два богатыря из Франции: Андре Вейль и Жан-Пьер Серр. Тут японцам крупно повезло: Вейль был признанным главой французских алгебраистов и членом группы Бурбаки, а молодой Серр играл сходную роль среди топологов. В жарких дискуссиях с ними головы японской молодежи трещали, мозги плавились, но в итоге кристаллизовались такие идеи и планы, которые вряд ли могли родиться в иной обстановке.

Однажды Танияма пристал к Вейлю с неким вопросом насчет эллиптических кривых и модулярных функций. Сначала француз ничего не понял: Танияма был не мастер изъясняться по-английски. Потом суть дела прояснилась, но придать своим надеждам точную формулировку Танияма так и не сумел. Все, что Вейль мог ответить молодому японцу, — это что если ему очень повезет по части вдохновения, то из его невнятных гипотез вырастет что-то дельное. Но пока надежда на это слаба!

Очевидно, Вейль не заметил небесного огня во взоре Танияма. А огонь-то был: похоже, что на миг в японца вселилась неукротимая мысль покойного Пуанкаре! Танияма пришел к убеждению, что каждая эллиптическая кривая порождается модулярными функциями — точнее, она «униформизуется модулярной формой». Увы, эта точная формулировка родилась много позже — в разговорах Танияма с его другом Шимура. А потом Танияма покончил с собой в приступе депрессии… Его гипотеза осталась без хозяина: непонятно было, как ее доказать или где ее проверить, и оттого ее долгое время никто не принимал всерьез. Первый отклик пришел лишь через тридцать лет — почти как в эпоху Ферма!

Лед тронулся в 1983 году, когда двадцатисемилетний немец Герд Фальтингс объявил всему миру: гипотеза Морделла доказана! Математики насторожились, но Фальтингс был истинный немец: в его длинном и сложном доказательстве не нашлось пробелов. Просто пришло время, накопились факты и понятия — и вот один талантливый алгебраист, опираясь на результаты десяти других алгебраистов, сумел решить проблему, которая шестьдесят лет простояла в ожидании хозяина. В математике ХХ века это не редкость. Стоит вспомнить вековую континуум-проблему в теории множеств, две гипотезы Бернсайда в теории групп или гипотезу Пуанкаре в топологии. Наконец и в теории чисел пришла пора собирать урожай давних посевов… Какая вершина станет следующей в ряду покоренных математиками? Неужели рухнут проблема Эйлера, гипотеза Римана или теорема Ферма? Хорошо бы!

И вот через два года после откровения Фальтингса в Германии объявился еще один вдохновенный математик. Звали его Герхард Фрей, и утверждал он нечто странное: будто теорема Ферма ВЫВОДИТСЯ из гипотезы Танияма! К сожалению, стилем изложения своих мыслей Фрей больше напоминал невезучего Танияма, чем своего четкого соотечественника Фальтингса. В Германии Фрея никто не понял, и он поехал за океан — в славный городок Принстон, где после Эйнштейна привыкли и не к таким визитерам. Недаром там свил свое гнездо Барри Мазур — разносторонний тополог, один из героев недавнего штурма гладких многообразий. И вырос рядом с Мазуром ученик — Кен Рибет, равно искушенный в тонкостях топологии и алгебры, но еще ничем себя не прославивший.

Впервые услыхав речи Фрея, Рибет решил, что это чушь и околонаучная фантастика (вероятно, так же реагировал Вейль на откровения Танияма). Но забыть эту «фантастику» Рибет не смог и временами возвращался к ней мысленно. Через полгода Рибет поверил, что в фантазиях Фрея есть нечто дельное, а через год он решил, что сам почти умеет доказать странную гипотезу Фрея. Но оставались некоторые «дырки», и Рибет решил исповедаться своему шефу Мазуру. Тот внимательно выслушал ученика и спокойно ответил: «Да у тебя же все сделано! Вот здесь нужно применить преобразование Ф, тут — воспользоваться леммами В и К, и все примет безупречный вид!» Так Рибет совершил прыжок из безвестности в бессмертие, использовав катапульту в лице Фрея и Мазура. По справедливости, всем им — вместе с покойным Танияма — следовало бы считаться доказателями великой теоремы Ферма.

Да вот беда: они выводили свое утверждение из гипотезы Танияма, которая сама не доказана! А вдруг она неверна? Математики давно знают, что «из лжи следует все, что угодно», если догадка Танияма ошибочна, то грош цена безупречным рассуждениям Рибета! Нужно срочно доказывать (или опровергать) гипотезу Танияма — иначе кто-нибудь вроде Фальтингса докажет теорему Ферма иным путем. Он и выйдет в герои!

Вряд ли мы когда-нибудь узнаем, сколько юных или матерых алгебраистов накинулось на теорему Ферма после успеха Фальтингса или после победы Рибета в 1986 году. Все они старались работать в тайне, чтобы в случае неудачи не быть причисленными к сообществу «чайников«-ферматистов. Известно, что самый удачливый из всех — Эндрю Уайлз из Кембриджа — ощутил вкус победы только в начале 1993 года. Это не столько обрадовало, сколько напугало Уайлза: что если в его доказательстве гипотезы Танияма обнаружится ошибка или пробел? Тогда погибла его научная репутация! Надо же аккуратно записать доказательство (но это будут многие десятки страниц!) и отложить его на полгода-год, чтобы потом перечитать хладнокровно и придирчиво… Но если за это время кто-нибудь опубликует свое доказательство? Ох, беда…

Все же Уайлз придумал двойной способ быстрой проверки своего доказательства. Во-первых, нужно довериться одному из надежных друзей-коллег и рассказать ему весь ход рассуждений. Со стороны все ошибки видней! Во-вторых, надо прочитать спецкурс на эту тему смышленым студентам и аспирантам: уж эти умники не пропустят ни одной ошибки лектора! Только надо не сообщать им конечную цель курса до последнего момента — иначе об этом узнает весь мир! И конечно, искать такую аудиторию надо подальше от Кембриджа — лучше даже не в Англии, а в Америке… Что может быть лучше далекого Принстона?

Туда и направился Уайлз весной 1993 года. Его терпеливый друг Никлас Кац, выслушав долгий доклад Уайлза, обнаружил в нем ряд пробелов, но все они оказались легко исправимы. Зато принстонские аспиранты вскоре разбежались со спецкурса Уайлза, не желая следовать за прихотливой мыслью лектора, который ведет их неведомо куда. После такой (не особенно глубокой) проверки своей работы Уайлз решил, что пора явить великое чудо свету.

В июне 1993 года в Кембридже проходила очередная конференция, посвященная «теории Ивасава» — популярному разделу теории чисел. Уайлз решил рассказать на ней свое доказательство гипотезы Танияма, не объявляя главный результат до самого конца. Доклад шел долго, но успешно, постепенно начали стекаться журналисты, которые что-то почуяли. Наконец, грянул гром: теорема Ферма доказана! Общее ликование не было омрачено какими-либо сомнениями: кажется, все чисто… Но через два месяца Кац, прочтя окончательный текст Уайлза, заметил в нем еще одну брешь. Некий переход в рассуждениях опирался на «систему Эйлера» — но то, что построил Уайлз, такой системой не являлось!

Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и четкой задаче — без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе — и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?

Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать свое поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать свое доказательство — с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был все-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?

Неожиданно пришла простая мысль: «система Эйлера» не работает там, где применима теория Ивасава. Почему бы не применить эту теорию напрямую — благо, самому Уайлзу она близка и привычна? И почему он не испробовал этот подход с самого начала, а увлекся чужим видением проблемы? Вспомнить эти детали Уайлз уже не мог — да и ни к чему это стало. Он провел необходимое рассуждение в рамках теории Ивасава, и все получилось за полчаса! Так — с опозданием в один год — была закрыта последняя брешь в доказательстве гипотезы Танияма. Итоговый текст был отдан на растерзание группе рецензентов известнейшего математического журнала, годом позже они заявили, что теперь ошибок нет. Таким образом, в 1995 году последняя гипотеза Ферма скончалась на трехсотшестидесятом году своей жизни, превратившись в доказанную теорему, которая неизбежно войдет в учебники теории чисел.

Подводя итог трехвековой возне вокруг теоремы Ферма, приходится сделать странный вывод: этой геройской эпопеи могло и не быть! Действительно, теорема Пифагора выражает простую и важную связь между наглядными природным объектами — длинами отрезков. Но нельзя сказать то же самое о теореме Ферма. Она выглядит скорее как культурная надстройка на научном субстрате — вроде достижения Северного полюса Земли или полета на Луну. Вспомним, что оба эти подвига были воспеты литераторами задолго до их свершения — еще в античную эпоху, после появления «Начал» Евклида, но до появления «Арифметики» Диофанта. Значит, тогда возникла общественная потребность в интеллектуальных подвигах этого сорта — хотя бы воображаемых! Прежде эллинам хватало поэм Гомера, как за сто лет до Ферма французам хватало религиозных увлечений. Но вот религиозные страсти схлынули — и рядом с ними встала наука.

В России такие процессы начались полтораста лет назад, когда Тургенев поставил Евгения Базарова в один ряд с Евгением Онегиным. Правда, литератор Тургенев плохо понимал мотивы действий ученого Базарова и не решился их воспеть, но это вскоре сделали ученый Иван Сеченов и просвещенный журналист Жюль Верн. Стихийная научно-техническая революция нуждается в культурной оболочке, чтобы проникнуть в умы большинства людей, и вот появляется сперва научная фантастика, а за нею научно-популярная литература (включая журнал «Знание — сила»).

При этом конкретная научная тема совсем не важна для широкой публики и не очень важна даже для героев-исполнителей. Так, услыхав о достижении Северного полюса Пири и Куком, Амундсен мгновенно изменил цель своей уже подготовленной экспедиции — и вскоре достиг Южного полюса, опередив Скотта на один месяц. Позднее успешный полет Юрия Гагарина вокруг Земли вынудил президента Кеннеди сменить прежнюю цель американской космической программы на более дорогую, но гораздо более впечатляющую: высадку людей на Луне.

Еще раньше проницательный Гильберт на наивный вопрос студентов: «Решение какой научной задачи было бы сейчас наиболее полезно»? — ответил шуткой: «Поймать муху на обратной стороне Луны!» На недоуменный вопрос: «А зачем это нужно?» — последовал четкий ответ: «ЭТО никому не нужно! Но подумайте о тех научных методах и технических средствах, которые нам придется развить для решения такой проблемы — и какое множество иных красивых задач мы решим попутно!»

Именно так получилось с теоремой Ферма. Эйлер вполне мог ее не заметить.

В таком случае кумиром математиков стала бы какая-нибудь другая задача — возможно, также из теории чисел. Например, проблема Эратосфена: конечно или бесконечно множество простых чисел-близнецов (таких, как 11 и 13, 17 и 19 и так далее)? Или проблема Эйлера: всякое ли четное число является суммой двух простых чисел? Или: есть ли алгебраическое соотношение между числами p и e? Эти три проблемы до сих пор не решены, хотя в ХХ веке математики заметно приблизились к пониманию их сути. Но этот век породил и много новых, не менее интересных задач, особенно на стыках математики с физикой и другими ветвями естествознания.

Еще в 1900 году Гильберт выделил одну из них: создать полную систему аксиом математической физики! Сто лет спустя эта проблема далека от решения — хотя бы потому, что арсенал математических средств физики неуклонно растет, и не все они имеют строгое обоснование. Но после 1970 года теоретическая физика разделилась на две ветви. Одна (классическая) со времен Ньютона занимается моделированием и прогнозированием УСТОЙЧИВЫХ процессов, другая (новорожденная) пытается формализовать взаимодействие НЕУСТОЙЧИВЫХ процессов и пути управления ими. Ясно, что эти две ветви физики надо аксиоматизировать порознь.

С первой из них, вероятно, удастся справиться лет за двадцать или пятьдесят…

А чего не хватает второй ветви физики — той, которая ведает всяческой эволюцией (включая диковинные фракталы и странные аттракторы, экологию биоценозов и теорию пассионарности Гумилева)? Это мы вряд ли скоро поймем. Но поклонение ученых новому кумиру уже стало массовым явлением. Вероятно, здесь развернется эпопея, сравнимая с трехвековой биографией теоремы Ферма. Так на стыках разных наук рождаются все новые куми-ры — подобные религиозным, но более сложные и динамичные…

Видимо, не может человек оставаться человеком, не свергая время от времени прежних кумиров и не сотворяя новых — в муках и с радостью! Пьеру Ферма повезло оказаться в роковой момент вблизи от горячей точки рождения нового кумира — и он сумел оставить на новорожденном отпечаток своей личности. Можно позавидовать такой судьбе, и не грех ей подражать.

Сергей Смирнов



См. также:
Преимущества онлайн-казино
Как заработать на игровых автоматах
Несколько советов по выбору интернет-казино
Как найти надежное интернет-казино
ПРОЕКТ
осуществляется
при поддержке

Окружной ресурсный центр информационных технологий (ОРЦИТ) СЗОУО г. Москвы Академия повышения квалификации и профессиональной переподготовки работников образования (АПКиППРО) АСКОН - разработчик САПР КОМПАС-3D. Группа компаний. Коломенский государственный педагогический институт (КГПИ) Информационные технологии в образовании. Международная конференция-выставка Издательский дом "СОЛОН-Пресс" Отраслевой фонд алгоритмов и программ ФГНУ "Государственный координационный центр информационных технологий" Еженедельник Издательского дома "1 сентября"  "Информатика" Московский  институт открытого образования (МИОО) Московский городской педагогический университет (МГПУ)
ГЛАВНАЯ
Участие вовсех направлениях олимпиады бесплатное

Номинант Примии Рунета 2007

Всероссийский Интернет-педсовет - 2005